Section 5.5 The Fundamental Theorem of Calculus part 2 (Minimum homework - all odds) You may use your calculator to find the areas that are needed in problems 1-4. (round to 2 decimals when needed)

1) The function $f(x)=x^{2}-4 x$ is graphed below.

1a) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=0$

1b) Use integration on your calculator to determine the area shaded below between $x=0$ and $x=4$

1c) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=4$

2) The function $f(x)=x^{2}-6 x$ is graphed below.

2a) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=0$

2b) Use integration on your calculator to determine the area shaded below between $x=0$ and $x=6$

2c) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=6$

3) The function $f(x)=2 x+2$ is graphed below

3a) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=2$

3b) Use integration on your calculator to determine the area shaded below between $x=-3$ and $x=-1$

3c) Use integration on your calculator to determine the area shaded below between $x=-3$ and $x=2$

4) The function $f(x)=5 x+10$ is graphed below

4a) Use integration on your calculator to determine the area shaded below between $x=-2$ and $x=1$

4b) Use integration on your calculator to determine the area shaded below between $x=-4$ and $x=-2$

4c) Use integration on your calculator to determine the area shaded below between $x=-4$ and $x=1$

\#5-12:
a) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.
b) Find any x-intercept within the interval $[a, b]$.
c) Find the area between the x-axis and $f(x)$ over the interval $[a, b]$ using definite integrals.
5) $f(x)=2 x-14 ;[4,8]$
7) $f(x)=3 x^{2}-3 ;[0,3]$
9) $f(x)=4 x^{3} ;[-2,1]$
11) $f(x)=3 x^{2}-27 ;[-1,5]$
6) $f(x)=2 x-12 ;[4,9]$
8) $f(x)=3 x^{2}-12 ;[0,4]$
10) $f(x)=8 x^{3} ;[-1,1]$
12) $f(x)=3 x^{2}-48 ;[-1,5]$

